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Foreword 

This technical report summarizes a study of different human-machine interface (HMI) 
configurations in helping drivers to return to manual driving in a timely and effective 
manner, following periods where automation has been active. It builds on recent efforts 
to identify key guidelines regarding the design and implementation of HMI in automated 
vehicles. The report should be of interest to researchers and the automobile industry 
who are working in the domain of advanced vehicle technology. 

This report is a product of a cooperative research program between the AAA Foundation 
for Traffic Safety and the SAFER-SIM University Transportation Center.  
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Executive Summary 

The effectiveness of the human–machine interface (HMI) in a driving automation 
system during takeover situations is based, in part, on its design. Past research has 
indicated that modality, specificity, and timing of the HMI have an impact on driver 
behavior. The objective of this study was to examine the effectiveness of two HMIs, 
which vary by modality, specificity, and timing, on drivers’ takeover time, performance, 
eye glance behavior, and subjective evaluation. Drivers’ behavior was examined in a 
driving simulator study with different levels of automation, varying traffic conditions, 
and while completing a non-driving related task. Results indicated that HMI type had a 
statistically significant effect on velocity and off-road eye glances such that those who 
were exposed to an HMI that gave multimodal warnings with greater specificity 
exhibited better performance. There were no effects of HMI on acceleration, lane 
position, other eye glance metrics (e.g., on road glance duration), trust, or usability. 
Future work should disentangle HMI design further to determine exactly which aspects 
of design yield differences in safety critical behavior. 

  



 

2 

 

Introduction 

Vehicle automation technologies have great potential to support drivers and 
reduce human errors that result in crashes. Driving automation systems have become 
more widely available and popular over the past several years. Adaptive cruise control 
(ACC), classified as Level 1 (L1) automation by the SAE International (SAE, 2021), is 
available on over 90% of new vehicles (Bartlett, 2021). When ACC is combined with lane 
keeping assistance (LKA), thereby automating lateral and longitudinal control of the 
vehicle, it is classified as Level 2 (L2) automation. However, at both levels the driver must 
still be engaged in the driving task and ready to take over quickly. In the future, Level 3 
(L3) systems will be available on production vehicles, where the driver is at times no 
longer responsible for monitoring the road, further altering the relationship between the 
driver and their vehicles.  

 While vehicle automation offers drivers both safety and convenience, automation 
may also have negative consequences. For example, research has shown that drivers 
were 50% more likely to engage in secondary tasks when using L2 automation compared 
to when they drove without the technology engaged (Dunn et al., 2019). The burgeoning 
popularity of vehicle automation technologies and the issue of driver inattention on the 
road while using these technologies underscores the importance of warnings and alerts 
systems. When these systems detect driver inattention or road conditions that the 
automation cannot handle, they issue alerts to the driver to return their attention to the 
road and/or to take over control of the vehicle.  

Warnings and alerts in takeover situations can improve driving behavior and 
help drivers become more aware of their surroundings. The manner in which an alert or 
warning is implemented through a vehicle’s human-machine interface (HMI) can vary 
greatly along many dimensions. For example, with respect to the modality of the alert, 
some studies have found that drivers have faster reaction times for auditory and visual 
alerts compared to audio alerts alone (Cortens et al., 2019). Others have found that the 
combination of visual and auditory alerts reduce distraction and inattention within an 
L2 automated vehicle (Atwood et al., 2019). However, some studies have found that 
auditory request to intervene led to better or equivocal takeover behavior compared to 
visual–auditory combinations (Roche & Brandenburg, 2018; Yoon et al., 2019; Zeeb et al., 
2015). Additionally, some studies have found that visual alerts only help when they are 
perceived by the driver (Yang et al., 2018). Although feedback through HMIs has shown 
to be favored by and useful to drivers, too much information can be overwhelming and 
poorly designed HMIs can be misleading. Audio alerts, which can be helpful in providing 
guidance and information to drivers (He et al., 2021; Kasuga et al., 2020; Petermeijer et 
al., 2017), have been found to be annoying in some situations or implementations 
(Nakashima & Crébolder, 2010). Moreover, some have found that the effectiveness of 
audio alerts vary by level of traffic density (Gaspar et al., 2018) and others have shown 
that visual alerts are only beneficial when they are actually perceived by the drivers 
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(Yang et al., 2018). Taken together, past research has suggested that the HMI design, 
specifically alert modality, should depend on the actual driving situation, such as the 
vehicle automation level, the driving environment, and the content of the alert. 

Alerts that precede the standard warning (i.e., a phased or staged warning) have 
been shown to improve takeover performance and yield increased scanning to the 
roadway prior to a takeover event (van der Heiden et al., 2017; Vogelpohl et al., 2018). A 
directional alert combined with tactile warnings, such as an initial auditory warning that 
instruct drivers and a seat presenting corresponding haptic information was an effective 
strategy in grabbing drivers’ attention in a non-driving task to warn them about an 
upcoming takeover (Cohen-Lazry et al., 2019; Fitch et al., 2011).   

Vehicle automation level, driving environment, and drivers’ behavior are all 
facets that should be considered when designing effective HMIs. More specifically, when 
designing an HMI one should consider: (a) the modality: visual, auditory, or a 
combination; (b) the messaging or content: a short declarative sentence, a general 
sentence, or use of visual icons; and (c) the timing: when warnings should be issued.  As 
noted, multimodal alerts are generally preferred over unimodal visual or auditory alerts 
as multimodal alerts are best to capture drivers’ peripheral attention when they are not 
looking at the alert signal (Politis et al., 2017). The specificity of takeover requests also 
plays an important role in alerting the drivers. Providing an alert such as a ‘takeover 
soon’ and ‘takeover now’ yield better driving performance than messages with lower 
urgency (Brandenburg & Roche, 2020). A compatible and staged alert, such as an initial 
auditory alert and yellow visual alerts followed by a takeover request, has been shown to 
be effective to warn drivers about an upcoming takeover when they were engaged in a 
non-driving task (Cohen-Lazry et al., 2019; Fitch et al., 2011). In addition, the timing of 
issuing a warning message is also an influential factor when considering HMI 
effectiveness: studies have found that 2 seconds may be sufficient time given the proper 
user interface and alert mode (Mok et al., 2017).  

Objective, Hypotheses, and Study Overview 

When designing HMIs there are many essential aspects that affect their 
effectiveness. Mehrotra et al. (2022), identified several HMI design recommendations to 
alert drivers and efficiently convey warning information, including (a) employing a 
multimodal HMI, e.g., both the visual and auditory modality; (b) providing clear warning 
messages that support driver decision-making and response selection; and (c) employing 
multi-stage alerts to provide drivers with a buffer to process and react to the warnings. 

Accordingly, this study aimed to examine driver responses to different HMI 
configurations, which consisted of auditory and visual warning messages, designed for 
different automated driving levels and scenarios. More specifically, this study sought to 
examine the effectiveness of two HMIs, which varied by specificity and timing, on 
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drivers’ takeover time and performance in different traffic conditions using different 
levels of automation. Drivers’ eye glance behavior, trust, and perceived usability were 
also examined.  

A driving simulator study was conducted in which two groups of drivers 
experienced one of two different HMI designs. One group experienced a Staged HMI 
design, which included a two-stage multimodal alert system, in which the drivers 
received a visual warning message followed by a non-descriptive auditory beep 
approximately five seconds later. The second group experienced a Simultaneous HMI 
design, which included a one-stage multimodal alert system where the drivers received a 
visual and auditory (i.e., explanatory) message at the same time. Within each group of 
drivers, the HMI was implemented at four different levels of automation (Level 0 to 
Level 3), with each encountering an edge-case condition/situation, such as weather 
conditions, traffic situations, or road conditions. Non-driving related tasks were included 
during drives using Level 3 automation to simulate possible or likely real-world 
behaviors.  

Based on previous research, it was hypothesized that the Simultaneous HMI 
would yield faster reactions (e.g., faster takeover times) and superior control 
performance than the Staged HMI. Second, it was hypothesized that the Simultaneous 
HMI would result in fewer and shorter off-road glances. However, no differences were 
expected between the HMIs in terms of glances to a non-driving related task; no matter 
the HMI, we expected drivers to make substantially more glances to the center console to 
complete the task. Lastly, it was hypothesized that the Simultaneous HMI design would 
result in higher trust and usability scores than the Staged HMI design. 

Method 

This human subjects experiment was approved by the University of 
Massachusetts Institutional Review Board (Study #3045) and performed in accordance 
with the ethical standards as described in the 1964 Declaration of Helsinki. 

Participants 

A total of 54 participants were recruited for this experiment. They were required 
to be between the ages of 18 to 40 and hold a valid U.S. driver’s license. An overview of 
the participants’ demographic information is shown in Table 1. Participants were 
recruited from the University of Massachusetts–Amherst campus via physical flyers and 
email advertisements. At the beginning of the visit, participants were assigned to: (a) one 
of two treatment conditions, either Staged HMI or Simultaneous HMI; and (b) the order 
in which they will experience the driving scenarios. The condition and order 
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assignments were based on a Latin Square Design counterbalance method. Participants 
were remunerated for their participation.  

Table 1. Participant Demographics 

 HMI 

 Staged Simultaneous 

Total Sample, N 27 27 
Average Age (SD)  19.1 (4.0) 20.1 (1.0) 
Gender   

Female 3 (11%) 8 (30%) 
Male 23 (85%) 19 (70%) 

Non-Binary 1 (4%) 0 (0%) 
Ethnicity/Race   

Asian 4 (15%) 8 (30%) 
Black/African American 1 (4%) 3 (11%) 

Caucasian 19 (70%) 15 (56%) 
Hispanic/Latino 2 (7%) 1 (4%) 

Other 1 (4%) 0 (0%) 
  

Apparatus 

Driving Simulator  

The driving simulator used in this study was a fixed-based Realtime Technologies 
Inc. (RTI, Ann Arbor, MI) driving simulator, which collected data at 60 Hz (Figure 1). The 
simulator consists of a fully equipped 2013 Ford Fusion surrounded by six screens with a 
330-degree field of view. The cab featured two dynamic side mirrors and a rear-view 
mirror that provided the rear view of the scenario to participants. In the car, a fully 
customizable virtual instrument cluster and center stack were employed. The simulator 
was surrounded by speakers to simulate environmental noise and engine sounds along 
with accurate doppler, intensity, and shift.  

The simulator system utilized specialized software capable of simulating different 
levels of vehicle automation (e.g., from Level 0 to Level 5); however, only Level 0 (L0) to 
Level 3 (L3) were used in the current study. For L0, the driver was expected to be in full 
control of the vehicle and was responsible for monitoring the traffic environment. For 
L1, the driver was expected to monitor the traffic environment and to be in full control 
of all aspects of vehicle control except maintaining speed and headway. For L2 
automation, which is a combination of ACC and a lane centering system, the driver did 
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not need to control speed/headway and steering but was required to monitor the traffic 
environment. Lastly, for L3 automation, the driver did not need to control 
speed/headway or steering, and also did not need to monitor the traffic environment, 
unless the system requested their intervention.  

 

Figure 1. Driving Simulator 

Eye Tracker and Sim Observer 

During each drive, participants were recorded using the video capture and review 
system, Sim Observer (RTI, Ann Arbor, MI). Two cameras recorded the participant’s hand 
and foot movements, as well as the forward view and instrument cluster. Participants' 
eye movements were also recorded using a SmartEye tracking system (Gothenburg, 
Sweden) with three SmartEye Pro cameras mounted on the dashboard and center 
console. The eye tracking data was used to assess the participants’ attentiveness and 
focus by classifying their glance regions.  

Takeover Scenarios 

To assess drivers’ takeover behavior, they encountered four driving scenarios—
one for each level of automation from L0 to L3—in which the automation approached 
the edge of its operational design domain, thereby requiring a transfer of control. For 
each scenario, the environment consisted of a straight roadway with a speed limit of 65 
mph. Each of the four driving scenarios is described below (see Table 2). 
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Table 2. Driving Takeover Scenarios for Each Level of Automation. 

Automation Level Critical Event Image 

L0 (Manual driving) Highway driving with foggy weather. 

 

L1 (ACC) Highway driving with heavy rain. 

 

L2 (ACC + LKA) Highway driving where the lane 
markings disappear. 

 

L3 (ACC + LKA) 

Highway driving that approaches 
traffic—a lead vehicle swerving 
lanes, stop and go traffic, and a 

police vehicle on the side of the road. 

 
 

Foggy weather was introduced during the L0 scenario in order to increase the 
driving demands as well as the need for drivers to remain attentive. For L1, heavy rain 
began to fall during the scenario representing a situation where the system should not be 
used. For L2, the lane markings abruptly disappeared, thereby rendering the lane 
centering system unusable. Lastly, for L3, the participant encountered a traffic jam 
wherein a lead vehicle began to behave erratically as other surrounding traffic slowed to 
a halt. A police vehicle officer was also on the side of the road, creating a plausible cause 
for the traffic behavior.   

Human-Machine Interfaces 

Two HMI interfaces were employed: Staged HMI and Simultaneous HMI. The visual and 
auditory warning messages varied according to the specific HMI. When the automation 
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was engaged and operating as expected, drivers saw the interface shown in Figure 2. For 
the Staged HMI, the warning messages were the same across all driving scenarios/levels 
of automation. For the visual warning, there was a red textbox at the bottom of the 
instrument cluster stating: “Takeover control.” The auditory warning was a simple beep. 
For the Simultaneous HMI design, the warning messages corresponded to each of the 
three different scenarios in Table 2. For the visual warning, there was a red textbox in 
the left-bottom of the instrument cluster and a pictogram at the right-bottom of the 
instrument cluster. For the auditory warning, a female voice stated a short imperative 
sentence that corresponded to the visual warning. The warnings from the Simultaneous 
HMI provided more explicit information to drivers about the appropriate response (e.g., 
use the brake pedal to disengage ACC). The details of the HMI designs and their visual 
message, alert signs, and warning message can be seen in Table 3. 

 

 

Figure 2. Interface during normal (automated) operations 
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Table 3. Description of the HMI warnings 

HMI Automation level Visual warning Auditory warning 
St

ag
ed

 

All levels 

Textbox: Takeover control 
No pictographic icons 

 

Beep 

Si
m

ul
ta

ne
ou

s 

L1 (ACC) 

Textbox: Takeover from ACC 
Pictographic: Foot on brake pedal 

 

“Takeover from ACC” 

L2 (ACC + LKA) 

Textbox: Takeover steering 
Pictographic: Hands on steering 

wheel 

 

“Takeover steering” 

L3 (ACC + LKA) 

Textbox: Takeover control 
Pictographic: Foot on brake pedal 

and Hands on steering wheel 

 

“Takeover control” 

 

With respect to the timing of the warnings, during each drive the automation 
disengaged at approximately 2:28 into the drive (see Figure 3). Automation disengaged 
right before the warnings were issued to emulate situations in which the rise of an edge-
case is sudden and unpredictable, thus forcing a disengagement with little or no warning 
for the driver. For the Staged HMI, the visual warning was issued at approximately 2:30 
and remained visible for 2 to 5 seconds; the auditory warning (i.e., a beep) was presented 
directly afterwards. For the Simultaneous HMI, both the auditory and visual warnings 
were issued at approximately 2:30. For the Simultaneous HMI, the warnings ended at 
approximately 2:35, after the auditory alert was completed. A summary of the timing of 
warnings is shown in Figure 3. 
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Figure 3. A simulated driving trip showing the sequencing and timing of phases, events, and 
alerts. 

Non-Driving Related Task 

During the L3 scenario, the participants were asked to engage in a non-driving 
related task (NDRT) in order to mimic possible or likely real-world behaviors of drivers 
using this type of system. A tablet was mounted to the center console of the vehicle (see 
Figure 4). The participant was instructed to choose from one of three short YouTube 
videos on the tablet to watch while driving: a cooking video or one of two movie trailers. 
Once engaged, the NDRT was available before, during, and after the takeover event; 
however, drivers were alerted by the system when the critical event was encountered 
(see above). After the drive, participants were asked to complete a form in which they 
briefly described the YouTube video to ensure that participants were actively engaged in 
the task during the drive.  
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Figure 4. An example of the non-driving related task on the tablet 

Procedure 

When participants arrived at the lab, they were asked to fill out initial screening 
questionnaires to assure that they qualified for the study. They were then taken through 
the informed consent process to assure they understood the procedure and what would 
be required of them. They were introduced to the simulator and the different automated 
features and capabilities. The researcher proceeded to create a profile in the eye tracking 
software and complete the calibration process.  

The experiment consisted of 5 drives: a practice drive and 4 drives (L0–L3) that 
emulated a variety of road conditions. For each 3-minute drive, the environment 
consisted of a straight roadway with a speed limit of 65 mph. Each started with an 
acclimation period to let the participants familiarize themselves with the driving 
environment before the automation function was enabled (see Figure 3). In the L1–L3 
drives, automation was enabled after the acclimation period. In the L3 drive, once 
automated mode was engaged for a period, the non-driving related task (NDRT) began. 
They were told to choose and watch one of the videos once an in-drive audio prompt 
instructed them to do so. For all drives, the critical event occurred towards the end of the 
trip and the warnings are issued according to the specific HMI (see Table 3).  

Upon completion of the L3 drive, the participant was asked to fill out a short form 
detailing what happened in the video that they chose. Following completion of the 
experimental drives, the participants were given questionnaires to assess their 
perceptions of the HMI they experienced using the System Usability Scale survey (SUS; 
from Brooke, 1996) and the Trust survey (from Jian et al., 2000), as well as questionnaires 
to ascertain their basic demographics and driving history. The experiment lasted 
approximately 60 minutes. Participants were compensated for their time. 
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Experimental Design  

Participants experienced either Staged HMI design or Simultaneous HMI design 
and drove each of the four automation levels—L0, L1, L2, and L3. The order of 
automation level was counterbalanced across participants using a Latin Square Design. 
Though automation level varied, the analyses were conducted separately for each level 
given significant differences between scenarios and critical events. Given the importance 
of measuring participants’ responses to critical events (i.e., taking over), time (5 seconds 
before the critical event versus 10 seconds after the critical event) was also considered 
with respect to driving performance behavior. In summary, the independent variables in 
this study are:  

• HMI design (between subject, 2 levels)  

o Staged 
o Simultaneous 

• Automation level (within subject, 4 levels) 

o L0, L1, L2, L3 

• Time (within subject, 2 levels) 

o Before takeover (5 seconds) 
o After takeover (10 seconds) 

Dependent Variables and Analysis 

To measure drivers’ performance, takeover time was calculated. Takeover time 
was defined as the time between when automation disengaged and when the participant 
began to regain control of the vehicle (i.e., put their hands on the wheel or their foot on 
the pedal). Before applying the statistical tests, outliers (takeover times greater than 8 
seconds) were removed to ensure the data followed a normal distribution. An analysis of 
variance (ANOVA) was used to analyze takeover time for each level of automation.  

Vehicle velocity, acceleration, lane position, and proportion of large deceleration 
(based on times when deceleration > 0.45 g) around the takeover were also measured. A 
repeated-measures ANOVA was used to analyze velocity, standard deviation of velocity, 
mean acceleration, maximum (negative) acceleration, and standard deviation of lane 
position, after a Box-Cox transformation was applied to ensure the normality of the data 
distribution. A generalized linear mixed model was applied on the maximum 
acceleration to examine the effect of HMI types and time. A zero-inflated negative 
binomial model was applied on the proportions of large deceleration since the data has 
an excess number of zeros (i.e., no instances of large deceleration).  

Eye glance measures were collected during the entire drives; however, mean on-
road glance duration, mean off-road glance duration, total off-road glance duration, long 
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off-road glance ratio, and off-road glance frequency were only evaluated during the 
approximately 15-second windows surrounding the takeover events (approximately 5 
seconds before the event and 10 seconds after the event). The actual length of the clip 
was fine-tuned so that the clip started at the beginning of a glance and ended at the end 
of a glance, resulting in a slightly longer clip on average than was used for the driving 
performance analysis. Before applying the statistical tests, any extremely short glances (< 
0.16 seconds) or long glances (> 70 seconds), which were indicative of poor eye tracking 
performance, were removed. The maximum glance duration was 12 seconds after 
removing said eye glances. A Box-Cox transformation was applied on the mean glance 
duration and total glance duration to ensure a normal distribution. In the following 
analysis, two types of glances were considered: (a) off-road glances, which are any 
glances not towards the windshield, and (b) glances towards the instrument cluster to 
examine the participants’ warning-checking behavior. Repeated-measures ANOVA were 
applied on the mean glance duration and total glance duration. Zero-inflated generalized 
linear mixed models were applied on the long-glance ratio and glance frequency towards 
the instrument cluster. Generalized linear mixed models were applied on the off-road 
glance frequency. 

With respect to the SUS survey and the Trust survey, the aggregated SUS score was 
calculated based on the methods developed by Brooke (1996) for each participant, and 
the aggregated Trust score was calculated based on the scale developed by Jian et al. 
(2000) for each participant. They were analyzed using ANOVAs. 

Results 

Driving Performance 

Descriptive statistics for the driving performance data are presented in Table 4. 
Takeover time was lower for the Simultaneous HMI group and for L2 automation. 
Vehicle velocity and acceleration were lower during L3 automation, compared to L1 and 
L2. The proportion of large deceleration was similar across HMI types and all the levels 
of automation. A complete detailing of all p-values for the statistical tests is provided in 
Appendix A.   
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Table 4. Descriptive statistics of driving performance data; mean values are shown with standard deviation in parentheses 

Level of 
Automation L1 L2 L3 

HMI Type Staged Simultaneous Staged Simultaneous Staged Simultaneous 

Takeover 
Time (s) 7.00 (4.55) 4.64 (0.745) 3.25 (1.26) 2.27 (1.28) 5.89 (2.93) 4.9 (2.51) 

 Before 
takeover 

After 
takeover 

Before 
takeover 

After 
takeover 

Before 
takeover 

After 
takeover 

Before 
takeover 

After 
takeover 

Before 
takeover 

After 
takeover 

Before 
takeover 

After 
takeover 

Velocity 
(mph) 

62.43 
(4.06) 

60.56 
(3.23) 

60.07 
(6.83) 

59.99 
(5.88) 

64.78 
(0.90) 

65.66 
(1.48) 

65.29 
(0.78) 

66.46 
(2.70) 

62.47 
(2.21) 

52.4 
(7.15) 

63.11 
(2.11) 

53.9 
(6.84) 

Acceleration 
(m/s/s) 

−0.21 
(0.10) 

0.07 
(0.29) 

−0.36 
(0.07) 

0.21 
(0.15) 

−0.25 
(0.07) 

0.24 
(0.08) 

−0.17 
(0.11) 

0.24 
(0.20) 

−0.40 
(0.14) 

−0.66 
(0.57) 

−0.37 
(0.12) 

−0.69 
(0.59) 

Maximum 
(negative) 
Acceleration 
(m/s/s) 

−0.65 
(0.46) 

−1.65 
(1.89) 

−0.48 
(0.06) 

−0.33 
(0.13) 

−0.51 
(0.02) 

−0.25 
(0.35) 

−0.47 
(0.12) 

−0.24 
(0.22) 

−1.13 
(1.58) 

−4.48 
(3.65) 

−0.77 
(0.70) 

−3.51 
(2.79) 

Proportion 
of Large 
Deceleration 

0.04 
(0.05) 

0.05 
(0.05) 

0.10 
(0.19) 

0.01 
(0.02) 

0.01 
(0.00) 

0.00 
(0.00) 

0.01 
(0.01) 

0.00 
(0.00) 

0.05 
(0.08) 

0.14 
(0.12) 

0.04 
(0.06) 

0.16 
(0.15) 

Standard 
Deviation of 
Lane 
Position 

0.08 
(0.03) 

0.14 
(0.04) 

0.06 
(0.04) 

0.15 
(0.18) 

0.03 
(0.03) 

0.13 
(0.06) 

0.07 
(0.10) 

0.28 
(0.36) 

0.07 
(0.06) 

0.26 
(0.30) 

0.07 
(0.05) 

0.26 
(0.22) 
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Takeover Time 

For each level of automation, mean takeover time for each HMI type was 
calculated and submitted to a one-way between-subjects ANOVA with HMI type as the 
independent variable. As shown in Figure 5, takeover time for the Simultaneous HMI 
was nominally shorter for each level of automation compared to Staged HMI; however, 
these did not reach statistical significance. 

 

Figure 5: Takeover time by level of automation and HMI   
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Velocity 

For each level of automation, mean velocity before and after automation takeover 
for each HMI type was calculated and submitted to a two-way repeated-measures 
ANOVA with time and HMI type as independent variables. The results indicated that for 
L1 and L2 automation, there were no significant main effects or interactions, whereas 
for L3 automation, time was significant (F(1, 27) = 134.8, p < .001). As shown in Figure 6, 
the vehicle velocity was substantially reduced for both HMI types after takeover under 
L3 automation.  

 

Figure 6: Vehicle velocity by time, level of automation, and HMI type.  
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Standard Deviation of Velocity 

The standard deviation of velocity between before the takeover and after the 
takeover across different levels of automation was also evaluated. A two-way repeated-
measures ANOVA was used to examine the effects of HMI type and time. The results 
revealed that for L1, there were significant main effect of time and a significant HMI type 
by time interaction, and for L2 and L3, there was a significant main effect of time. Figure 
7 shows that for L1, the standard deviation of vehicle velocity for the Staged HMI 
increased more after takeover than that of the Simultaneous HMI. For L2 and L3, the 
standard deviation of vehicle velocity increased for both HMI types. 

 

Figure 7: Standard deviation of vehicle velocity by time, level of automation, and HMI type. 
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Acceleration 

For each level of automation, mean acceleration before and after takeover was 
calculated and submitted to a two-way repeated-measures ANOVA with time and HMI 
type as independent variables. With L1 automation, there was a significant effect of time 
(F(1, 17) = 54.7, p < .0001) and an interaction between HMI type and time (F(1, 17) = 6.4, 
p < .0001). When the level of automation was L2 and L3, time was significant 
(L2: F(1, 17) = 56.7, p < .0001, L3: F(1, 17) = 5.7, p = 0.02), but there was no effect of HMI 
type nor any interactions. As shown in Figure 8, for L1, the increase in acceleration after 
takeover was greater for the Simultaneous HMI than the Staged HMI. With L1 and L2 
automation, there was negative acceleration (i.e., deceleration) prior to the takeover and 
positive acceleration after takeover. For L3 automation, there was deceleration both 
before and after takeover. 

 

Figure 8: Vehicle acceleration by time, level of automation, and HMI type.  
The dashed line represents an acceleration of 0. 
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Maximum (Negative) Acceleration 

Maximum (negative) acceleration (i.e., deceleration) was another dependent 
variable to assess drivers’ driving behavior when encountering the critical event, with 
larger negative values indicating more severe deceleration by the drivers in the scenario. 
A generalized linear mixed model was used separately on each level of automation with 
time and HMI type as the independent variables. The results revealed that for L1, time 
and the interaction of HMI type and time were significant. For L2, there were no 
significant factors and for L3, time was significant. Figure 9 presents the effects of time 
and HMI type on maximum (negative) acceleration across different levels of automation. 

 

Figure 9: Maximum (negative) acceleration by time, level of automation, and HMI type. 
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Proportion of Large Deceleration 

A zero-inflated generalized linear mixed model was conducted separately on each 
level of automation with time and HMI type as independent variables. The model results 
indicated that for L1, the interaction of time and HMI type (beta = -3.2, p = 0.015) was 
significant. For L2, there were no significant effects, and for L3, time (beta = 1.2, 
p < .0001) was significant. Figure 10 shows the time proportion of large deceleration 
across different levels of automation, time, and HMI type.  

 

Figure 10: Proportion of large deceleration by time, level of automation, and HMI type.  
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Standard Deviation of Lane Position 

To measure drivers’ lane changing behavior, standard deviation of lane position 
was evaluated using repeated-measures ANOVA. The results and Figure 13 show that 
only time was significant for L1, L2, and L3. 

 

Figure 11: Standard deviation of lane position by time, level of automation, and HMI type. 
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Eye Glance Behavior 

In the dataset, there were six glance areas of interest: center console (i.e., towards 
the tablet for the NDRT), instrument cluster (e.g., for the speedometer or HMI warning 
messages), rearview mirror, left screen (i.e., left window), right screen (i.e., right 
window), and windshield (i.e., forward roadway). The glances towards the windshield 
were considered on-road glances and glances towards other areas were considered off-
road glances. Most glances were towards the center console and windshield and there 
were more off-road glances than on-road glances. 

Table 5 shows descriptive statistics for glances during the approximately 15-
second window surrounding the critical event. The data show that the mean glance 
duration, total glance duration, and long-glance ratio varied across different levels of 
automation and HMI types. However, the off-road glance frequency and the glance 
frequency towards the instrument cluster were lower in L3 automation than L1 and L2 
automation. A complete detailing of all p-values for the statistical tests is provided in 
Appendix A. 
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Table 5. Descriptive statistics for eye glance data during critical events; mean values are shown with standard deviations in parentheses. 

Level of Automation L1 L2 L3 
HMI Type Staged Simultaneous Staged Simultaneous Staged Simultaneous 

Mean Glance Duration       

    On-road 0.41 (0.33) 0.95 (1.25) 1.89 (4.69) 1.41 (2.19) 1.03 (1.65) 1.07 (1.46) 
    Off-road 0.52 (0.46) 0.53 (0.36) 0.53 (0.29) 0.84 (1.46) 0.88 (1.51) 0.68 (0.79) 
    Towards instrument cluster 0.54 (0.26) 0.55 (0.29) 0.44 (0.22) 0.51 (0.39) 0.59 (0.39) 0.57 (0.27) 
Total Glance Duration       

    Off-road 8.19 (1.85) 6.65 (4.31) 5.27 (3.11) 6.25 (5.77) 7.90 (6.85) 4.96 (5.33) 
    Towards instrument cluster 3.63 (1.31) 2.46 (1.71) 1.18 (0.8) 1.13 (0.67) 1.88 (1.28) 0.82 (0.64) 
Glance Frequency       

    Off-road 15.8 (7.05) 12.55 (5.99) 10.00 (4.97) 7.45 (4.41) 9.00 (5.15) 7.31 (5.7) 
    Towards instrument cluster 6.75 (2.75) 4.50 (1.87) 2.67 (1.53) 2.2 (1.64) 3.20 (2.17) 1.43 (0.79) 
Long-Glance Ratio       

    Off-road 0.03 (0.06) 0.00 (0.00) 0.00 (0.00) 0.02 (0.03) 0.05 (0.1) 0.04 (0.1) 
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Glance Duration 

There were five dependent variables related to glance duration: mean on-road 
glance duration, mean glance duration towards the instrument cluster, mean off-road 
glance duration, total glance duration towards the instrument cluster, and total off-road 
glance duration. The repeated-measures ANOVA with only HMI type as an independent 
variable suggested that there were no significant effects for any of these dependent 
variables. Figure 12 shows the mean off-road glance duration separated by levels of 
automation and HMI type. The plot indicates that most outliers were glances towards the 
center console, especially for the L3 automation. 

 

Figure 12: Mean off-road glance duration by level of automation and HMI type;  
each area of interest is represented by shape. 
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Long Off-Road Glance Ratio 

Only long off-road glance ratio was considered as there were no long glances 
towards the instrument cluster. The long off-road glance ratio was calculated by the ratio 
of the number of long off-road glances (> 2 s) to the number of all off-road glances. The 
data was submitted to a zero-inflated generalized linear mixed model with the HMI type 
being the only independent variable separated by the level of automation. The zero-
inflated generalized linear mixed model results indicated that there was no significant 
effect of HMI type. Figure 13 shows the long off-road glance ratios, where it can be seen 
that the majority of values were close to 0. Not surprisingly, these ratios increased for the 
L3 condition, where the NDRT likely incurred more long duration glances relative to L1 
and L2. 

 

Figure 13: Long off-road glance ratio by level of automation and HMI type. 
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Glance Frequency 

The glance frequency towards the instrument cluster was submitted to a zero-
inflated GLMM separated by the level of automation with only HMI type as an 
independent variable. For L1 and L2 automation, there were no significant effects. When 
the level of automation was L3, HMI type (beta = 0.58, p = 0.02) was significant. 

The off-road glance frequency data was submitted to a GLMM without the zero 
inflation settings with only HMI type as an independent variable. The results were 
similar to that of the glance frequency towards the instrument cluster: with L3 
automation, HMI type (beta = 0.11, p < .0001) was significant, whereas there were no 
significant effects for L1 or L2 automation. 

Figure 14 shows boxplots of glance frequency separated by levels of automation, 
HMI type, and glance location. It can be seen that the glance frequency was reduced for 
the Simultaneous HMI type under the L3 automation for both the off-road glances and 
glances towards the instrument cluster.  

 
Figure 14: Boxplot of glance frequency by level of automation, glance location, and HMI type. 

Individual dots represent outliers. 
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System Usability and Trust 

HMI type was the only independent variable used for the ANOVAs on the 
aggregate SUS score and the Trust score. No significant effect of HMI type was found for 
either metric. The SUS score distribution and the Trust score are shown in Figure 15 and 
Figure 16, respectively. 

 

Figure 15: Average SUS score for each HMI type. The dots represent outliers. 

 

Figure 16. Average Trust score for HMI type 
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Discussion 

The objective of this study was to examine the effectiveness of two HMIs, which 
vary by specificity and timing, on driver performance, eye glance behavior, and their 
subjective ratings of trust and usability. A simulator study was employed to assess the 
effectiveness of the HMIs under different levels of automation, L1 to L3. The first (Staged 
HMI) provided drivers with a succinct visual warning first, followed by an auditory beep 
five seconds later, whereas the second (Simultaneous HMI) provided drivers with a more 
detailed auditory and visual message simultaneously.   

The first hypothesis was focused on the effect of HMI on driver performance in 
terms of takeover time, velocity, acceleration, proportion of large deceleration events, 
and standard deviation of lane position. In general, the Simultaneous HMI yielded 
nominally shorter response times at each level of automation compared to the Staged 
HMI; however, these results did not reach conventional levels of statistical significance. 
There was also no effect of HMI on driver velocity, but there was an interaction between 
HMI and time for standard deviation of velocity in the L1 drive: those who were exposed 
to the Staged HMI had large variations in their velocity after the takeover (in comparison 
to the Simultaneous HMI group). In the L1 automation drive, there was an interaction 
between HMI and time for acceleration, maximum negative acceleration, and proportion 
of large deceleration events. Taken together, it implied that those who received a 
Simultaneous HMI had smoother control transitions than those in the Staged HMI group, 
who exhibited more drastic deceleration after the takeover. The effect of HMI for 
acceleration could potentially indicate the existence of confounding variables (e.g., those 
in the simultaneous group were naturally more attentive and attuned to the 
environment and hence, more likely to compensate by accelerating when taking over). 

The second hypothesis was that the Simultaneous HMI would result in fewer and 
shorter off-road glances. This was partially supported: the Simultaneous HMI resulted in 
fewer off-road glances and fewer glances to the instrument cluster than the Staged HMI 
for all levels of automation, although the effect was statistically significant only for the 
L3 automation drive. However, there was no effect of HMI on glance duration, either on- 
or off-road, or the ratio of long glances.  

Finally, for the third hypothesis, there was no effect of HMI on either the usability 
survey or trust scores, implying that the two HMIs produced equivalent levels of trust 
and usability.  

Overall, the current results demonstrate some benefits of the Simultaneous HMI 
over the Staged HMI; however, such benefits were limited in certain respects (as noted 
above). This could be due to a variety of reasons. First, both HMIs employed in the 
current study leveraged different design recommendations from past literature (e.g., 
Mehrotra et al., 2022). For example, the Simultaneous HMI offered more direct and clear 
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guidance to drivers regarding appropriate decision-making, whereas the Staged HMI 
offered multi-modal alerts that occurred in a timed or phased manner. These varying 
design elements might have benefitted drivers equally or helped offset differences that 
would otherwise be observed. It stands to reason that a well-designed HMI that considers 
guidelines that are grounded in human factors principles and/or past research, should 
afford drivers performance benefits, while also finding them to be trustworthy and 
usable.  

Limitations and Future Work 

First, this experiment was conducted in a driving simulator. More research in the 
field is necessary to validate these results in real-world driving contexts. Along these 
lines, the current evaluation utilized only a very limited number of use case scenarios; a 
more comprehensive assessment in a broader array of situations is merited. Second, the 
participant population for this experiment skewed young and male. A more diverse 
participant population that is more representative of U.S. drivers is necessary. Third, 
though we designed the two HMIs to be distinctly different according to specificity and 
timing, there were only small differences between the two HMIs. A deeper analysis of 
other driving and behavioral metrics may yield differences between the HMIs. It is also 
important to note that the current results are specific to the current implementation of 
the HMIs and should not considered a robust assessment of the principles or guidelines 
that informed the implementation.   

Conclusion 

Past research has highlighted the importance of good HMI design for driving 
automation systems, but there have been limited efforts to look at how different design 
manifestations—modality, timing, and specificity of warnings—impact driver 
performance. The current study sought to examine how these elements of HMI design, 
implemented in different ways, affected driver behavior in terms of driving behavior, 
eye glances, and subjective ratings. The driving simulator experiment found a small 
effect of HMI on performance, suggesting benefits for multimodal presentation of alerts 
that support driver decision-making. Implications from this study include the need for a 
more thorough look into which aspects of HMI design truly affect driver behavior—
especially given the array of principles that support good HMI design. In addition, the 
differing results across automation levels indicate the importance of considering the 
system or level of automation in the implementation of HMI as well as appropriately 
training (and warning) drivers to the abilities and limitations of driving automation 
systems. 
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Appendix A  

The p-values for all measures of driving and takeover performance/behavior are 
summarized in Table 6 and eye glance behavior in Table 7. 

Table 6. p-values of the statistical analysis for takeover time, velocity, standard deviation of velocity, 
acceleration, minimum acceleration, time proportion of large deceleration, and standard deviation 
of lane position; cell values with an asterisk represents significance. 

 Level of Automation HMI Type Time HMI Type * Time 

Takeover Time 
L1 0.06 - - 
L2 0.19 - - 
L3 0.36 - - 

Velocity 
L1 0.83 0.12 0.36 
L2 0.39 0.12 0.69 
L3 0.43 < .001* 0.97 

SD of Velocity 
L1 0.31 < .001* 0.02* 
L2 0.22 < .001* 0.53 
L3 0.88 < .001* 0.98 

Acceleration 
L1 0.99 < .001* < .001* 
L2 0.54 < .001* 0.51 
L3 0.98 0.02* 0.82 

Max. (Neg.) Acceleration 
L1 0.29 < 0.01* < .001* 
L2 0.72 0.35 0.57 
L3 0.31 < .001* 0.79 

Time Proportion of  
Large Deceleration 

L1 0.68 0.71 0.02* 
L2 0.64 0.96 0.97 
L3 0.44 0.02* 0.41 

SD of Lane Position 
L1 0.39 < 0.01* 0.80 
L2 0.61 < .001* 0.72 
L3 0.80 < .001* 0.36 
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Table 7. p-values of the glance data analysis with HMI type being the independent variable; cell 
values with an asterisk represents significance. 

 L1 L2 L3 

Mean Glance Duration    

    On-road 0.28 0.96 0.35 
    Off-road 0.53 0.76 0.38 
    Towards instrument cluster 0.55 0.56 0.99 
Total Glance Duration    

    Off-road 0.28 0.76 0.47 
    Towards instrument cluster 0.25 0.98 0.12 
Glance Frequency    

    Off-road 0.32 0.40 < .001* 
    Towards instrument cluster 0.13 0.48 0.02* 
Long-Glance Ratio    

    Off-road 1.00 1.00 0.86 
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